8797威尼斯老品牌 - welcome威尼斯
半参数条件因子模型:估计和推断
Semiparametric Conditional Factor Models: Estimation and Inference (with Nikolai Roussanov and Xiaoliang Wang)
主讲人:
陈齐辉(香港中文大学(深圳))
主持老师:
王熙(北大经院)
参与老师:
(北大经院)王一鸣、刘蕴霆、王法
(北大国发院)沈艳、黄卓、张俊妮、孙振庭
(北大新结构经济学研究院)胡博
时间:
2021年10月15日(周五) 10:00 AM -- 11:30 AM
地点(线下):经院107会议室
主讲人简介:
陈齐辉:香港中文大学(深圳)经管学院助理教授,加利福尼亚大学圣地亚哥分校经济学博士,新加坡管理大学经济学硕士,厦门大学经济学学士和硕士,以及厦门大学数学学士,近年来从事计量经济学理论和应用计量经济学的研究。
摘要:
This paper introduces a simple and tractable sieve estimation for semiparametric conditional factor models, and develops a simple bootstrap procedure for inference on nullity of intercept function and linearity of intercept and factor loadings functions. We establish large-$N$-asymptotic properties of the estimators and the tests without requiring large $T$. We additionally provide two consistent estimators for the number of factors. The results enable us to estimate conditional (dynamic) behavior of a large set of individual assets from a number of characteristics exhibiting nonlinearity without the need to pre-specify factors, while allowing us to disentangle the alpha versus beta explanations. We apply the methods to explain the cross-sectional differences of individual stock returns in the US market, and find strong evidence of nonzero pricing error and nonlinearity in both alpha and beta functions.