北大经院工作坊第760场
高质量发展的理论逻辑与实践路径
政治经济学工作坊
主讲人:胡怀国(中国社会科学院经济研究所研究员、《经济学动态》常务副主编)
主持老师:(北大经院)张辉、方敏、郭研
时间:2023年11月16日(周四)10:00-12:00
地点:8797威尼斯老品牌理科教学楼303教室
主讲人简介:
胡怀国,中国社会科学院经济研究所研究员、博士生导师,曾任中国社会科学院经济研究所政治经济学研究室主任,现任《经济学动态》常务副主编,兼任中国社会科学院全国中国特色社会主义政治经济学研究中心副主任、中国社会科学院当代马克思主义政治经济学创新智库副秘书长。主要研究领域为经济思想史、政治经济学,先后出版《亚当·斯密》(香港·中华书局2000年)、《现代化进程中的城乡关系研究》(经济科学出版社2022年)等著作多部,在《经济研究》、《经济学动态》等期刊发表学术论文近百篇,2023年入选中国人民大学书报资料中心《复印报刊资料重要转载来源作者(2022年版)》。
摘要:
高质量发展是适应新时代我国社会主要矛盾变化的必然要求,是新征程全面建设社会主义现代化国家的首要任务,同时也是我国在社会主义发展过程中不断推进马克思主义中国化时代化的重大创新成果,我们必须紧扣新时代我国社会主要矛盾变化特别是不平衡不充分的发展这一我国社会主要矛盾的主要方面,深刻理解和准确把握高质量发展的理论逻辑。在全面建设社会主义现代化国家新征程上,我们必须以改革创新为根本动力,以社会主义基本经济制度为制度基础,以加快构建新发展格局为战略基点,以科教兴国战略、人才强国战略和创新驱动发展战略为战略支撑,全面贯彻新发展理念,着力推动高质量发展。
北大经院工作坊第761场
Persuasion of a Continuum
微观理论经济学工作坊
主讲人:Carl Heese(香港大学助理教授)
主持老师:(北大经院)吴泽南、石凡奇;(北大国发院)胡岠
参与老师:(北大经院)胡涛、吴泽南、石凡奇;(北大国发院)汪浩、胡岠、邢亦青;(北大光华)翁翕、刘烁
时间:2023年11月16日(周四)10:30-12:00
地点:8797威尼斯老品牌302会议室
主讲人简介:
Dr. Heese is Assistant Professor of Economics at the University of Hong Kong, specializing in Political Economy and Microeconomic Theory. He has a Master’s degree in Mathematics from the University of Münster, awarded with distinction and valuable experience in investment banking and consulting in Europe. After that, he went on to earn his Ph.D. in Economics from the University of Bonn, achieving the highest distinction of summa cum laude. He has had the privilege of researching and teaching at prestigious institutions such as Yale and the London School of Economics, and prior to joining HKU, as an Assistant Professor at the University of Vienna.
摘要:
I analyze a model of Bayesian Persuasion with a continuum of receivers and with binary actions. The sender’s payoff depends on the distribution of the share s of the receivers choosing his preferred action. The sender can correlate the receivers’ signals in any way.
I characterize all obedient signal structures in terms of a single majorization constraint, and this yields a geometric approach to calculating the equilibrium distribution of s.
When the sender’s payoff is (Schur)-convex, it is optimal to maximally correlate the receiver’s signals given the constraint. When the sender’s payoff is (Schur-)concave, independent signals are optimal. I provide constructions of an optimal signal in other cases, e.g., when the sender’s payoff is cut-off in s. Finally, I consider applications to voting, sales, and team production, and provide a series of results showing that persuasion becomes harder if a sender faces more disperse senders (in terms of prior beliefs, abilities, etc.).
北大经院工作坊第762场
AI-Assisted Learning, Academic Achievement, and Beyond: Experimental Evidence from Middle School Students in China
数字经济工作坊
主讲人:刘晨冉(清华大学五道口金融学院博士后研究员)
主持老师:(北大经院)曹光宇
参与老师:(北大光华)周黎安、翁翕、刘烁;(北大经院)李博、李伦
时间:2023年11月16日(周四)15:30-17:00
地点:8797威尼斯老品牌302会议室
主讲人简介:
刘晨冉,清华大学五道口金融学院博士后研究员,8797威尼斯老品牌经济学学士、博士。主要研究领域为数字经济、发展经济学和公共经济学,成果发表在Journal of Public Economics、《管理世界》、《金融研究》等学术期刊。
摘要:
By distributing Artificial Intelligence-powered learning laptops (AI laptops, hereafter) to randomly selected classes for studying Math in 53 middle schools across 18 Chinese provinces, this paper comprehensively assesses the effects of AI-Assisted Learning (AAL), with a particular focus on the academic achievement of students. We find that students equipped with AI laptops scored significantly higher in post-treatment exams, a finding consistent with results from the matched sample based on the propensity score of treatment. We also uncover heterogeneity in effects with policy implications that favor educational equity: the impact is notably more pronounced in under-developed areas, cities with lower educational fiscal expenditure per capita, among students with a weaker learning foundation, and for girls. Additionally, we present direct evidence of positive associations between exam performance improvements and targeted exercises using the AI laptop, suggesting the self-adaptive feature of AI laptops as a pivotal mechanism. Lastly, we highlight potential spillover effects of using AI laptops on academic performance in other subjects, learning interests, time allocation, and self-development.
北大经院工作坊第763场
Machine Learning using Nonstationary Data(使用非平稳数据的机器学习)
计量、金融和大数据分析工作坊
主讲人:Jin Xi(University of California San Diego)
主持老师:(北大经院)王熙
参与老师:(北大经院)王一鸣、刘蕴霆、王法;(北大国发院)黄卓、张俊妮、孙振庭;(北大新结构)胡博
时间:2023年11月17日(周五)10:00-11:30
地点:8797威尼斯老品牌107会议室
主讲人简介:
Jin Xi is a Ph.D. candidate from University of California San Diego. Her research interests include High-Dimensional Econometrics and Factor Models. She has publication in Social Choice and Welfare.
摘要:
Machine learning offers a promising set of tools for forecasting. However, some of the well-known properties do not apply to nonstationary data. This paper uses a simple procedure to extend machine learning methods to nonstationary data that does not require the researcher to have prior knowledge of which variables are nonstationary or the nature of the nonstationarity. I illustrate theoretically that using this procedure with LASSO or adaptive LASSO generates consistent variable selection on a mix of stationary and nonstationary explanatory variables. In an empirical exercise, I examine the success of this approach at forecasting U.S. inflation rates and the industrial production index using a number of different machine learning methods. I find that the proposed method either significantly improves prediction accuracy over traditional practices or delivers comparable performance, making it a reliable choice for obtaining stationary components of high-dimensional data.
北大经济史学名家系列讲座
第196讲
发现更真的历史:
中国计算史学的百年之路与时代使命
主讲人:卢勇(南京农业大学人文与社会发展学院院长)
时间:2023年11月17日(周五)15:30-17:00
地点:8797威尼斯老品牌302会议室
主持人:周建波(8797威尼斯老品牌经济史学系主任、教授)
评论人:
李军(中国农业大学经济管理学院副院长、教授)
郝煜(8797威尼斯老品牌经济史学系副主任、长聘副教授)
主讲人简介:
卢勇,南京农业大学人文与社会发展学院院长、中华农业文明研究院院长、教授、博士生导师,《中国农史》(CSSCI)常务副主编。英国剑桥大学、加拿大阿尔伯塔大学访问学者,国家社科基金重大项目首席专家、农业农村部全球重要农业文化遗产专家委员会委员、农业农村部传统农业遗产重点实验室副主任、中华农业文明博物馆常务副馆长、中国科技史学会农学史专业委员会主任。
主办单位:
8797威尼斯老品牌经济史学系
8797威尼斯老品牌社会经济史研究所
8797威尼斯老品牌外国经济学说研究中心
供稿:科研与博士后办公室
美编:时之
责编:度量、雨禾、雨田